. Power — the Work Done Every Second

In mechanical situations, whenever energy is converted, work is being done.

For example, when an object is falling, the force of gravity is doing work on ,
that object equal to the increase in kinetic energy (ignoring air resistance). ‘

The rate at which this work is being done is called the power.
You can calculate it using:

power (in watts) = work done (in joules) + time taken (in seconds)

Or, in symbols: P= %

Power is measured in watts.
A watt is equivalent to one joule of work done per second.

EXAMPLE: If 10 joules of work are done in 2 seconds, what is the power?

P=W=:t=10+2=5W

EXAMPLE: For how long must a 3.2 kilowatt (3.2 x 10* watt) engine run
to do 480 kilojoules (4.8 x 10° joules) of work?

P=Wxt
Multiplying both sides by t gives: P x t = W
Then dividing both sides by P gives: t = W = P

So,t=W=p=28x10"_ 454
3.2x10°

EXAMPLE: A force of 125 newtons pushes a crate 5.2 metres in 2.6 seconds.
What is the power? (The motion is in the same direction as the force.)

First you need to find the work done (see page 18):
W=Fxs=125x5.2=650)

Then use W to find the power:
P=W+t=650+2.6=250W

Ibe power of love ain't thal‘ sgggvigli — it’s just a lot of work over tlr'm#qm

1) What is the power output of a motor if it does 250 joules of work in 4.0 seconds?

2) If a lift mechanism works at 14 kilowatts, how long does it take to do 91 kilojoules of work?

3) An engine provides a force of 276 N to push an object 1.25 km in 2.5 minutes.
What power is the engine working at?
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Power is also Force Multiplied By Speed

There's a useful equation you can derive for the work done by a force every second on an
object moving at a constant speed. Follow through the working in the example below:

EXAMPLE: What power is a car engine working at if it produces a driving force of
2100 newtons when moving at a steady speed of 32 metres per second?

driving force drag force
= . =2100N

The car is moving at a steady speed. This means the forces on it are balanced,
| so the driving force must be equal to the drag force.

The power of the engine is given by P = W + ¢.

W = F x s, so we can substitute for the work done, giving P = F—;Q
Now, F—;‘—s is the same as F x ¢, s0 P = F x 3.
Finally we use the fact that § = distance travelled _ .. speed, v.

' ¢ time taken

So, P=Fx-§-=l-'xv

power (in watts) = force (in newtons) x speed (in metres per second)

For our example, P = 2100 x 32 = 67 200 = 67 000 W (or 67 kW) (to 2 s.f.)

(This answer is rounded to 2 s.f. to match the data in the question — see page 1.)

IMPORTANT:
The formula P = F x v is only true when the object is moving
at a constant speed in the same direction as the force.

MO_QMLQ forces with a lot of power — a stampeding herd of cows..

1) What is the power delivered by a train engine if its driving force of 1.80 x 10° newtons
produces a constant speed of 40.0 metres per second?

2) A skydiver is falling at a constant velocity of 45 metres per second.
Gravity is doing work on her at a rate of 31 500 joules per second. What is her weight?
3) A caris travelling at steady speed. Its engine delivers a power of
‘ 5.20 x 10* watts to provide a force of 1650 newtons.
L What speed is the car travelling at (in metres per second)?

—
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’L How Much of What You Put In Do You Get Out?

1)

2)
3)

4)

For most mechanical systems you put in energy in one form

and the system gives out energy in another.

However, some energy is always converted into forms that aren’t useful.
For example, an electric motor converts electrical energy into heat and
sound as well as useful kinetic energy.

You can measure the efficiency of a system by the percentage
of total energy put in that is converted to useful forms.

. _ Useful energy out
Efficiency = “Toalencgyln * 100%

EXAMPLE: A pirate uses a rope to pull a box of mass 4.5 kg vertically
upwards through 5.0 m of water. He pulls with a force of 98 N,
What is the efficiency of this system?

The energy the pirate puts in is
the work he does pulling the rope.

The useful energy out is the gravitational
potential energy gained by the box.

Some energy is converted to heat and
sound by friction as the box is dragged
through the water.

Total energy in = work done = F x s
=98 x 5.0
=490 )

m’ Useful energy out = gravitational potential

energy gained
=mxgxh
=4.5x9.81 x5.0
=220.725)

Useful energy out
Total energy in

= %’@%é x 100% = 45.045... = 45% (to 2 s.f.)

x ' OO%

So, efficiency =

Efficiency — getting on with these questions instead of messing about..,

1) A motor uses 375 joules of electrical energy in lifting a 12.9 kilogram mass through
2.50 metres. What is its efficiency?

2) Ittakes 1.4 megajoules (1.4 x 10 joules) of chemical energy from the petrol in a car engine

to accelerate a 560 kilogram car from rest to 25 metres per second on a flat road.
a) What is the gain in kinetic energy?
b} What is the efficiency of the car?

_
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Forces and Springs

Hooke’s Law — Extension is Directly Proportional to Force

1) When you apply a force to an object you can cause it to stretch and deform (change shape).
2) Elastic objects are objects that return to their original shape Force, F
after this deforming force is removed, e.g. springs.
3) When a spring is supported at the top and a weight
is attached to the bottom, it stretches. ?;g’:ha'
4) The extension, A/, of a spring is directly proportional -
to the force applied, F. This is Hooke’s Law.
5) This relationship is also true for many -.-r..1Extension, A/
other elastic objects like metal wires.

Force, F

force spring constant . extension

(in newtons, N) ~ (in newtons per metre, Nm~') ~ (in metres, m)

F=kxAl

The spring constant, k, depends on the stiffness of the material that you are stretching.
It's measured in newtons per metre (Nm™').

EXAMPLE: A force is applied to a spring with a spring constant of 65.0 Nm™'.
The spring extends by 12.3 cm. What size is the force?

F=kx Al
Al=123cm=0.123 m

So, F=65.0x0.123 k=650Nm"
=7.995
= 8.00 N (to 3 s.f.) AVaD 3o t

EXAMPLE: A sack of flour of mass 7.10 kg is attached to the bottom of a
vertical spring. The spring constant is 85.0 Nm™' and the top of
the spring is supported. How much does the spring extend by?

F:kxAI,soAl:%

You need to work out the force from the given mass:
F = weight of flour=m x g

=7.10 x 9.81 = 69.651 N k=850 N |
So A] < 69.651 |
85.0 A |

; = 0.8194... ety

|Flour |

=0.819 m (to 3 s.f.) BN,
m=7.10kg
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Forces and Springs

Hooke’s Law Stops Working when the Force is Great Enough

There’s a limit to the amount of force you can apply to an object 4
for the extension to keep on increasing proportionally.

1) The graph shows force against extension for a spring. E Past point
2) For small forces, force and extension are proportional. s, P, force is
So the first part of the graph shows a straight-line % no longer
relationship between force and extension. B proportional
o o extension.

3) There is a maximum force that the spring can
take and still extend proportionally. This is Force is
known as the limit of proportionality and is PIEPSLICT.
shown on the graph at the point marked P. )

4) The point marked E is the elastic limit. Extension (m)

If you increase the force past this point, the spring
will be permanently stretched. When the force is
removed, the spring will be longer than at the start.

5) Beyond the elastic limit, we say that the spring deforms plastically.

Work Done can be Stored as Elastic Strain Energy

1) When a material is stretched, work has to
be done in stretching the material.

2) If a deformation is elastic, all the work done is stored as elastic strain
energy (also called elastic potential energy) in the material.

3) When the stretching force is removed, this stored
energy is transferred to other forms — e.g. when an
elastic band is stretched and then fired across a room,
elastic strain energy is transferred to kinetic energy.

4) If a deformation is plastic, work is done to separate atoms, and
energy is not stored as strain energy (it's mostly lost as heat).

Spring into action — force yourself to learn all this...

1) A force applied to a spring with spring constant 64.1 Nm™' causes it to extend by 24.5 cm.
What was the force applied to the spring?

2) A pile of bricks is hung off a spring with spring constant 84.0 Nm™'.
The bricks apply a force of 378 N on the spring. How much does the spring extend by?

3) The mass limit for each bag taken on a flight with Cheapskate Airways is 9.0 kg.
The mass of each bag is measured by attaching the bag to a spring.

a) A bag of mass 7.4 kg extends the spring by 8.4 cm. What is the spring constant?

b) The first bag is removed and another bag is attached to the spring.
The spring extends by 9.5 cm. Can this bag be taken on the flight?

4) a) What is meant by the limit of proportionality?

b) Why might a spring not return to its original length after
having been stretched and then released?
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Current and Potential Difference

| Electric Current — the Rate of Flow of Charge Around a Circuit

1) In a circuit, negatively-charged electrons flow from -
the negative end of a battery to the positive end. "

2) This flow of charge is called an electric current.

3) However, you can also think of current as a flow of
positive charge in the other direction, from positive By oy
to negative. This is called conventional current. NTI g e gy

The electric current at a point in the wire is defined as:

the amount of charge passing the point (in coulombs, C)
the time it takes for the charge to pass (in seconds, s)

current (in amperes, A) =

Or, in symbols:  F= % 1 EXAMPLE: 585 C of charge passes a point in a circuit in
45.0 5. What is the current at this point?

‘ BA SR, e
' I= {,501—45.0—13.0/\

Potential Difference (Voltage) — the Energy Per Unit Charge

1) In all circuits, energy is transferred from the power supply to the components.

2) The power supply does work on the charged particles,
which carry this energy around the circuit.

3) The potential difference across a component is defined as the work done
(or energy transferred) per coulomb of charge moved through the component.

work done (in joules, |)
charge moved (in coulombs, C)

Potential difference across component (in volts, V) =

In symbols: V= %

-
EXAMPLE: A component does 10.8 | of work for every 2.70 C that passes through it.
What is the potential difference across the component?
W o 20 B
[ \-—Q,m\—m-—4.00v
Physicists love camping trips — they get to study po-tent-ial difference...

1) How long does it take to transfer 12 C of charge if the average current is 3.0 A?

2) The potential difference across a bulb is 1.5V,
How much work is done to pass 9.2 C through the bulb?

3) A motor runs for 275 seconds and does 9540 | of work.
If the current in the circuit is 3.80 A, what is the potential difference across the motor?
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Current in Electric Circuits

Charge is Always Conserved in Circuits

Current flows
1) As charge flows through a circuit, it doesn’t get used up or lost. (b this way
2) You can easily build a circuit in which the electric —& *=| =
current can be split between two wires — two B>
lamps connected in parallel is a good example. ; > ®
3) Because charge is conserved in circuits, whatever charge
flows into a junction will flow out again. HEETS @

4) Since current is rate of flow of charge, it follows that whatever current
flows into a junction is the same as the current flowing out of it.

the sum of the currents going into the junction = the sum of the currents going out

This is Kirchhoff’s first law. It means that the current is the same everywhere
in a series circuit, and is shared between the branches of a parallel circuit.

5) N.B. — current arrows on circuit diagrams normally show
the direction of flow of conventional current (see p.25),

EXAMPLE: Use Kirchoff’s first law to find the unknown current /,.

- {lll - Sum of currents in = sum of currents out
1.0=05+03 +1,

228 R 10=08+1
+'0.3A ® l:]_()_()_3
+ I ® I =02A

1.0A

EXAMPLE: Calculate the missing currents, 7, and £, in this circuit.

Looking at the junction immediately after /;:

1| 1,=12+0.7
= 19A
§ 1.5A I <A And looking at the junction immediately before /.:
| k ™ 07A 1.5+,=19
' \ L=19-15
i I,=04A
Conserve charge — make nature reserves for circuit boards...
1) What is the value of I? 2) What is the value of Lt

esee—re S L

e |

0.5A »024 o 1.3A
05 A
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Potential Difference in Electric Circuits

Energy is Always Conserved in Circuits

1) Energy is given to charged particles by the power supply and taken off them by the
components in the circuit.

2) Since energy is conserved, the amount of energy one coulomb of charge loses when
going around the circuit must be equal to the energy it’s given by the power supply.

3) This must be true regardless of the route the charge takes around the circuit.
This means that:

For any closed loop in a circuit, the sum of the potential differences across
the components equals the potential difference of the power supply.

This Kirchhoff’s second law. It means that:

* In a series circuit, the potential difference of the power supply is split
between all the components.

* Inaparallel circuit, each loop has the same potential difference as the power supply.

P—

EXAMPLE: Use Kirchoff's second law to calculate the ~  ——{}-——-
potential differences across the resistor, V,, and
the lamp, V,, in the circuit shown on the right.

First look at just the top loop:
p.d. of power supply = sum of p.d.s of components in top loop
6=2+V,

SoV,=6-2=4V

Now look at just the outside loop:

p.d. of power supply = sum of p.d.s of components in outside loop
6=2+ vl + 2

SoV, =6-2-2=2V

This page i entially tricky — so have a read of it all again...

1) For the circuit on the right, calculate: g 12V ll
a) the voltage across the motor, V,,. ]l |
b) the voltage across the loudspeaker, V. Ve

t 3V
2) A third loop containing two filament lamps —@——i:)—

is added to the circuit in parallel with the first two loops.
What is the sum of the voltages SN __. 2V .\

S
of the two filament lamps? D_EF J
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Resistance

Resistance — The Ratio of Potential Difference to Current

1) If there’s a potential difference across a component a current will flow through it.

2) Usually, as the potential difference is increased the current increases — this makes sense
if you think of the potential difference as a kind of force pushing the charged particles.

3) You can link current and potential difference by defining “resistance”:

potential difference across component (in volts, V)
current passing through component (in amps, A)

Resistance of component (in ohms, (1) =

Or, insymbols: R= %’-

Multiplying both sides by I gives: V=IxR

4) Components with a low resistance allow a large current to flow through them,
while components with a high resistance allow only a small current.

5) The resistance isn’t always constant though — it can take different values as the current
and voltage change, or it can change with conditions like temperature and light level.

EXAMPLE: If a potential difference of 12 V across a component causes a current
of 1.0 mA to flow through it, what is the resistance of the component?

N e
R=7,50 R= 205 =12000 2, or 12 k02

EXAMPLE: What potential difference must be applied across a lamp with a
resistance of 200 €2 in order for a current of 0.2 A to flow through it?

V=IxR soV=02x200=40V

EXAMPLE: What current will flow through an 850  resistor if
a potential difference of 6.3 V is applied across it?

V =1Ix R. Dividing both sides by R gives ] = %

50l = B@??') = 0.007411... = 0.0074 A (or 7.4 mA) (to 2 s.f.) ‘
hm my. look at that — more questions to do...

1) If a current of 2.5 amps flows through a component with a resistance of 15 ohms,
what is the potential difference across the component?

2) What current will flow through a 2500 €2 resistor if the voltage across it is 6.0 volts?
3) What is the resistance of a component if 1.5 volts drives a current of 0.024 amps through it?
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| Ohm’s Law Says Potential Difference is Proportional to Current '

1) An I-V graph is a graph of current against potential
difference for a component. For any I-V graph, the resistance ,
at a given point is the potential difference divided by the current (R = ‘[1
2) Provided the temperature is constant, the current through an
ohmic component (e.g. a resistor) is directly proportional to the
potential difference across it (V = ). This is called Ohm’s Law.

31" An ohmic component’s /- graph is a straight line, with a gradient equal to
1 = the resistance of the component. The resistance (and therefore the gradient) is constant.

* So for an ohmic component, doubling the
potential difference doubles the current.

<
* Often external factors, such as temperature, will B
have a significant effect on resistance, so you need to §
remember that Ohm's law is only true for components
like resistors at constant temperature. 0 Potential dfference / V

4) Sometimes you'll see a graph with negative values for p.d. and current. This just means the
current is flowing the other way (so the terminals of the power supply have been switched).

/ IA:’
EXAMPLE: Look at the I-V graph for a resistor on the right. 3
What is its resistance when the potential difference
acrossitis: a)10V, b)5V, -5V, d)-10Vv? o o
Vi(V)
sioMaci] e guopas Wiace B 10 5 5 10
da) R—T—T—](](I b R-T—(]S—IUQ : ; P
RO G g LRV
(-‘IR—I_j)._S_]()II le—T— = —]()() 3
_I-V Graphs for Other Components Aren’t Straight Lines
The I-V graphs for other components don’t have constant gradients.
This means the resistance changes with voltage.
1) As the p.d. across a Filament Diode
filament lamp gets larger, Lamp el At
the filament gets hotter and
its resistance increases.
2) Diodes only let current LAV o RAL)

flow in one direction. The
resistance of a diode is very
high in the other direction.

-Ve decided yo eed amp-le practice to keep your knowledge current,..

1) State Ohm’s law.

2) Sketch I-V graphs for: a) an ohmic resistor, b) a filament lamp, c¢) a diode.
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Power in Circuits

Power — the Rate of Transfer of Energy

1) Components in electrical circuits transfer the energy carried by electrons into other forms.

2) The work done each second (or the energy transferred each second)
is the power of a component:

work done (in joules, ])
time taken (in seconds, s)

power (in watts, W) =

Or, insymbols: P= %V-

This is the same as the equation for mechanical power that you saw on page 20.

EXAMPLE: A lift motor does 3.0 x 10° | of work in a single
one-minute journey. At what power is it working?

=W, sop=30x10"_ 5000 W or 5 kw)

Calculating Power from Current and Potential Difference

The work done is equal to the potential difference across the component multiplied by the
amount of charge that has flowed through it (W = V x Q) — see p.25.

So: P:Y’;j

The amount of charge that flows through a component is equal to the current
through it multiplied by the time taken (Q = I x t) — see p.25 again.

So: p=Yxfxt
Cancelling the t's gives: P=VxlI

power (in watts) = potential difference (in volts) x current (in amps)

EXAMPLE: If the potential difference across a component is 6 volts and the current
through it is 0.50 milliamps (5.0 x 10~ amps), at what rate is it doing work?

P=VxILsoP=6x50x10%=0.003W (or 3 mW)

Knowledge is power — make sure you know these power equations...

1) What is the power output of a component if the current through it is
0.12 amps when the potential difference across it is 6.5 volts?

2) An electric heater has an operating power of 45 W.
a) What current passes through the heater when the potential difference across it is 14 volts?
b) How much work does the heater do in 12 seconds?
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Power in Circuits

' You Can Combine the Equations for Power and Resistance

You can combine the last equation for the power of an electrical component, P= V x I,
with the equation for resistance, R = 5[ (see p.28), to create two more useful equations.

1) Substitute V=IxRintoP=V x[to get: P=IxRxI=IR

power (in watts) = [current (in amps)]? x resistance (in ohms)

2) Orsubstitute /= ¥ into P=V x I to get: P=Vx % = v

R R

[potential difference (in volts)]”
resistance (in ohms)

power (in watts) =

Here are some examples — the key here is choosing the right equation to use. If the question
gives you the value of two variables and asks you to find a third, you should choose the
equation that relates these three variables. You might have to rearrange it before using it.

EXAMPLE: What is the power output of a component with
resistance 100 2 if the current through it is 0.2 A?

P=IFR s0P=02x100=4W

EXAMPLE: Resistors get hotter when a current flows through them.
If you double the current through a resistor, what happens
to the amount of heat energy produced every second?

It increases by a factor of 4 — this is because the current is squared in the
expression for the power (you can substitute some values of / and R in to check this).

EXAMPLE: If a lamp has an operating power of 6.5 W and the potential
difference across it is 12 V, what is its resistance?

P= Lﬁ so multiplying both sides by R gives P x R = V*, and dividing by P gives:

)

R=Y, s0R=12 222153 =22 Q (to 2 s.)
- soR=12 222.153... = 1.

(This answer is rounded to 2 s.f. to match the data in the question — see page 1.)

.

—_—d

Watts up with your watch, Dr Watson? Dunno, but it sure is irksome...

1) What is the power output of a 2400 (2 component if the current through it is 1.2 A?

2) A motor has a resistance of 100 2. How much work does it do
[ in 1T minute if it is connected to a 6 V power supply?

3) The current through a 6.0 W lamp is 0.50 A. What is the resistance of the lamp?
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Waves Transfer Energy Without Transferring Matter

1) Waves are oscillations that transfer energy — like water waves or electromagnetic waves.
2) Waves carry energy from one place to another without transferring matter.

| Transverse Waves Vibrate at 90° to the Direction of Travel

Transverse waves have vibrations at 90° to the direction of energy transfer and travel.
E.g. electromagnetic waves (like light) or shaking a Slinky® spring from side to side.
Vibrations from

| 0 5|de to Slde
l 1 '&1 Wave transfers energy
.L > and travels this way

. Longitudinal Waves Vibrate Along the Direction of Travel

Longitudinal waves vibrate in the same direction as the direction of energy transfer and travel.
They are made of alternate compressions and rarefactions of the medium.

E.g. sound waves or pushing on the end of a Slinky® spring.

Vibrations are in the same direction
as the wave is travelling

' AAN A : 0 AARAR AN A " ann e Anrn

{ {

(1) J 3 || f} - - - '] )
\ 1 oL L \

Wave transfers energy this way

compression rarefaction

~ You Can Show Wave Motion on a Graph

. : 3 A
A displacement-distance graph shows how far each E /«———~ ~
part of the wave is displaced from its equilibrium  e—f- E Rl .-
position for different distances along the wave. 5/ Distance algng wave (m)
. & A o/
A=A ~
g A RS s 0 &= You can also consider just one point on a wave
3 T/ T yme(s) and plot how its displacement changes with
g *A Mo, time. This is a displacement-time graph.

Displacement = how far a point on the wave has moved from its equilibrium position
Amplitude (A) = the largest possible displacement from the equilibrium position

Wavelength () = the length of one wave cycle, from crest to crest or trough to trough
Period (7) = the time taken for a whole cycle (vibration) to complete, or to pass a given point

Transverse waves are terrible singers — they always skip the chorus...

1) Sketch a graph of displacement against distance for five full wavelengths of a wave with
amplitude 0.01 metres and wavelength 0.02 metres.

2) Sketch a graph of displacement against time for three complete oscillations of one part of a
wave of amplitude 0.05 metres and time period 0.8 seconds.
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Frequency and the Wave Equation

Frequency is the Number of Oscillations per Second

If a wave has a time period of 0.2 seconds, it takes 0.2 seconds for a point on the wave to
complete one full oscillation. So in one second the point will complete 5 full oscillations.

The number of oscillations that one point on a wave completes every second is called the
frequency of the wave. It has the symbol f and is measured in hertz (Hz).

So a wave with a time period of 0.2 seconds has a frequency of 5 hertz.
The equation for frequency is:

Frequency = freperiod © =7

—

EXAMPLE: A wave has a frequency of 350 Hz. What is the
period of oscillation of one point on that wave?

ik } = o= = 0.002857... = 0.0029 s (to 2 s.f.)

1
350

The Wave Equation Relates Speed, Frequency and Wavelength

For a wave of frequency f (in hertz), wavelength A (in metres)
and wave speed v (in metres per second) the wave equation is:

speed = frequency x wavelength or v=fx A

EXAMPLE: Sound is a longitudinal wave. If a sound with a frequency of 250 Hz
has a wavelength of 1.32 metres in air, what is the speed of sound in air?

v=Ffx A=250x 1.32 = 330 ms™

EXAMPLE: All electromagnetic waves travel at 3.0 x 10 ms™' in a vacuum. If a radio
wave has a wavelength of 1.5 km in a vacuum, what is its frequency?

v=Ffx ) sof=¥ = 39X 107 _ 200 000 Hz (or 200 kHz)
/ 1.5x10

Wave e jon: lift arm + oscillate hand =

1) A radio wave has a frequency of 6.25 x 10° Hz.
What is the time period of the radio wave?
2) A sound wave has a time period of 0.0012 s. Find the frequency of the sound.
3) A wave along a spring has a frequency of 3.5 Hz and a wavelength of 1.4 m.
What is the speed of the wave?
4) A wave has time period 7.1 s and is moving at speed 180 ms™'.
a) What is the frequency of the wave?
b) What is the wavelength of the wave?
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Superposition of Waves

| Superposition Happens When Two Waves Meet

1) If two waves meet (e.g. waves on a rope travelling

in opposite directions), their displacements will A s /\ A

briefly combine. . A

.

2) They become one single wave, with a displacement _N\__ V— / i iR
equal to the displacement of each individual wave & -
added together. BEFORE MEETING  AFTER

3) This is called superposition.

4) If two crests meet, the heights of the waves are added together and the crest
height increases. This is called constructive interference because the amplitude
of the superposed waves is larger than the amplitude of the individual waves.

5) If the crest of one wave meets the trough of another wave, you subtract the
trough depth from the crest height. So if the crest height is the same as the trough
depth they’ll cancel out. This is called destructive interference because the
amplitude of the superposed waves is smaller than that of the individual waves.

6) After combining, the waves then carry on as they were before.

If Waves are In Phase they Interfere Constructively

1) Two waves travelling in the same direction are in phase AVAY
with each other when the peaks of one wave exactly ¥ = /\/\J
line up with the peaks of the other, and the troughs of AVAV;
one wave exactly line up with the troughs of the other. In phase,

2) If these waves are superposed, they interfere constructively. ~ SOnstructive interference

The combined amplitude of the final wave is equal to the sum of the individual waves.

If Waves are Out of Phase they Interfere Destructively |

1) Two waves are exactly out of phase if the peaks of one A\,
wave line up with the troughs of the other (and vice versa). G g

2) If these waves are superposed, they interfere destructively. VAVA
If the individual waves had the same amplitude Out of phase,
originally, they will cancel each other out. destructive interference

Constructive imérfegeace — getting woken up early by noisy builders...

1) What is meant by:
a) superposition?
b) constructive interference?
c) destructive interference?
2) A wave with an amplitude of 0.67 mm is superposed with an identical wave with the same
amplitude. The waves are in phase. What is the amplitude of the superposed wave?
3) Two waves, both of amplitude 19.1 m, are exactly out of phase.
What is the amplitude of the single wave formed when they superpose?
- 4) A wave with an amplitude of 35 cm is in phase with a 41 cm amplitude wave. The waves
meet and constructive interference occurs. What is the amplitude of the combined wave?
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Reflection and Diffraction

Waves can be Reflected

1) When a wave hits a boundary between one medium and
another, some (or nearly all) of the wave is reflected back.

2) The angle of the incident (incoming) wave is

incident wave called the angle of incidence, and the angle of the
i reflected wave is called the angle of reflection.
) 3) The angles of incidence and reflection are both
normal measured from the normal — an imaginary

line running perpendicular to the boundary.
reflected wave  4) The law of reflection says that:

angle of incidence (i) = angle of reflection (r)

" Diffraction — Waves Spreading Out

1) Waves spread out (‘diffract’) at Gap much wider " Gan a bt wider. e the same
the edges when they pass through than wavelength than wavelength  as wavelength

a gap or pass an object.
The amount of diffraction depends l
on the size of the gap relative to the

wavelength of the wave. The narrower

the gap, or the longer the wavelength, | iwe diffraction Dm only Maxlmum
the more the wave spreads out. at edges

[

3) A marrow gap is one about the same size as the wavelength of the wave.
So whether a gap counts as narrow or not depends on the wave.

4) If light is shone at a narrow slit about the same width
as the wavelength of the light, the light diffracts.

shit
light § 5) The diffracted light forms a diffraction pattern of bright
S <@ and dark fringes. This pattern is caused by constructive
and destructive interference of light waves (see p.34).
% 6) You get diffraction around

ksl the edges of obstacles too. ’ ]) J J J )

m:“l 7) The shadow is where the wave is blocked. | ‘shadow’
The wider the obstacle compared to I ] ] n \
the wavelength, the less diffraction it
causes, so the longer the shadow.

Mind the gap between the train and the platform — you might diffract...

1) What is the law of reflection?

2) Sketch a diagram of a light wave being reflected at an angle by a mirror. Label the incident
and reflected waves, the normal, the angle of incidence and the angle of reflection.

3) A water wave travels through a gap about as wide as its wavelength.
The gap is made slightly larger. How will the amount of diffraction change?

4) What happens when light is shone at a slit about the same size as its wavelength?
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Waves can be Refracted

1) Reflection isn't all that happens when a wave meets a boundary. Usually, some of it is
refracted too — it passes through the boundary and changes direction.

2) Waves travel at different speeds in different media.
E.g. — electromagnetic waves, like light, usually travel slower in denser media.

If a wave hits a boundary ‘face on’, it But if the wave hits at an angle,

slows down without changing direction.  this bit slows down first...
\ ...while this bit carries

Less Dense & Denser

on at the same speed
, L= until it meets the
’ boundary. The wave

changes direction.

Less Dense Denser

LTI

When an electromagnetic wave enters a denser medium, it bends towards the normal.
When one enters a less dense medium, it bends away from the normal.

The Refractive Index is a Ratio of Speeds

The refractive index of a medium, n, is the ratio of the speed of light in a vacuum to the
speed of light in that medium. Every transparent material has a refractive index and different
materials have different refractive indices.

You can Calculate the Refractive Index using Snell’s Law

When an incident ray travelling in air meets a boundary with another material,
the angle of refraction of the ray, r, depends on the refractive index of the
material and the angle of incidence, /.

bound R i i
un aw\ This is called Snell’s Law.  refractive index (n) = =0
light .
s roflecioq | 9as
“ EXAMPLE: The angle of incidence of a beam of light on
e -7 a glass block is 65°. The angle of refraction is

35°, What is the refractive index of the block?
refracted ray

= Sini _sinb3 _ 4 580... = 1.6
sinr  sin35

incident ray

You can rearrange Snell’s Law to find an angle of refraction or incidence, e.g. r = sin™'(301),

This page has a high refractive index — it’s really slowed me down...

1) A wave hits a boundary between two media head on. Describe what happens to the wave.
2) A wave hits a boundary between two media at an angle. Describe what happens to the wave.

3) A light wave travelling in air hits a transparent material at an angle of 72° to the normal to the
boundary. The angle of refraction is 39°. What is the refractive index of the material?
\

' 4) A light wave hits the surface of the water in a pond at 23° to the normal. The refractive index
of the pond water is 1.3. What is the angle of refraction?
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Atomic Structure

Atoms are Made Up of Three Types of Particle

1) According to the nuclear model, the atom is made up of electrons, protons and neutrons.

2) The nucleus is at the centre of the atom. It contains protons (which have a positive charge)
and neutrons (which have no charge), giving the nucleus an overall positive charge.
Protons and neutrons are both known as nucleons.

3) The nucleus is tiny but it makes up most of the mass of the atom. The rest of the atom is
mostly empty space, containing only the negative electrons which orbit around the nucleus.

Here’s the structure Sl
of a lithium atom: :

protons

relative | relative
mass | charge

g proton 1 | &)
A 5% 2. neutron | 0
| . |_electron | 0.0005 | -1
electron -, .- neutrons

Jtomlc Structure can be Represented Using Nuclide Notation

1) The proton number (or atomic number), Z, is the number of protons in an atom.,
2) The nucleon number (or mass number), A, is the total number of protons and neutrons.
3) An element can be described by its proton and nucleon numbers:

Abcieon number —+AN/__ slement  For example, lithium has 4 neutrons and

proton number —» 7 symbol 3 protons, so its symbol is 3Li.

! Isotopes are Different Forms of the Same Element

1) lIsotopes are atoms with the same number of protons but a different number of neutrons.
2) This means they have the same proton number, but different nucleon numbers.
3] Many isotopes are unstable and give off radiation (see next page).

EXAMPLE: Carbon-12 and carbon-14 are two isotopes of carbon.

Carbon-12, 'iC  Carbon-14, '{C The radioactive decay
i o of carbon-14 is used in
radiocarbon dating to
L estimate the age of things that
are thousands of years old.

gl oAy o .-~ ™, 8 neutrons,
6 neutrons, 6 protons

6 protons A (2 extra neutrons)

Radiocarbon dating — what physicists do on Valentine’s Day..

1) How many protons and neutrons are there in each of the following nuclei?
a) ‘%Am b) “3iPu c) 38Sr d) #Co e) ‘#&Ra
What is an isotope of an element?

2)
=
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Nuclear Radiation

If an atom is unstable, it can undergo radioactive decay and give off nuclear radiation. I
By decaying, a nucleus emits particles or energy, making it more stable.

There are three kinds of nuclear radiation you need to know about:

In Alpha Decay (Symbol «x), an Alpha Particle is Emitted

1) An alpha particle is emitted from the nucleus.
It is made up of two protons and two neutrons.

2) As a result, the proton number of the atom that has decayed
goes down by 2 and the nucleon number goes down by 4.

EXAMPLE: The alpha decay of radium-226.

26Ra — 22Rn + o Pro!on and nucleon ntfml)e.rs are both conserved
during all forms of radioactive decay:

Nucleon number; 226 = 222 + 4  Proton number: 88 = 86 + 2

" In Beta Decay (Symbol 3), an Electron is Emitted
1) A neutron in the nucleus turns into a proton and an electron.
The electron is emitted from the nucleus and is called a beta particle.

2) As a result the proton number of the nucleus goes up by 1,
but the nucleon number doesn’t change.

i
|

|

EXAMPLE: The beta decay of radium-228.

8Ra — *#BAc + 3 Nucleon number: 228 =228 + 0

1 Proton number: 88 = 89 — 1

_ Gamma Decay (Symbol ) Emits Electromagnetic Radiation

1) High-energy electromagnetic radiation, called gamma radiation
is emitted from the nucleus.

2) The number of protons and neutrons in the nucleus stays the same.

| - EXAMPLE: The gamma decay of iodine-131.

' = "Y1+ Proton and nucleon numbers don't change.

You beta learn this radiation stuff — | promise it’s not alpha nothing...

1) What is an alpha particle made up of?

2) Describe what happens during the emission of beta and gamma radiation.

3) Complete the following decay equations by filling in any missing radiation symbols,

proton numbers or nucleon numbers:

a) MPu=>-U+la b) K=8Ca+B ¢ %Rn-=%Po+-_ d) HC--N+B
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Planning an Experiment and Collecting Data

_Scientists do Experiments to Answer Questions

You need to plan experiments carefully to make sure you get the best results possible:

1) Make a prediction or hypothesis — a testable statement about what you think will happen.
2) Identify your variables (see below).

3) Think about any risks, and how you can minimise them.

4) Select the right equipment for the job — if you're measuring a time interval in minutes
you might use a stopwatch, but if it's in milliseconds you may need to get a computer to
measure the time for you, as your reaction time could interfere with your results.

5) Decide what data you need to collect and how you'll do it.
b6) Write a clear, detailed method describing exactly what you're going to do.

’ You Need to Know What Your Variables Are

A variable is anything that has the potential to change in an experiment,

The independent variable is the thing  The dependent variable is the thing
you change in an experiment, yOu measure in an experiment,

All the other variables must be kept the same to make it a fair test. These are control variables.

EXAMPLE: An experiment investigates how the height an object is dropped from
affects the time it takes to fall. Identify the variables in this experiment,

The independent variable is the height you drop the object from — it's what you change.
The dependent variable is the time the object takes to fall — it’s what you measure.
Everything else in the experiment should be controlled, so no other variables change.
For example, the same object should be used throughout the experiment (so its size

and mass don't change), the conditions in the room you do the experiment in should be
constant, and you shouldn’t change your measuring equipment halfway through.

L J

| Repeating an Experiment Lets You Calculate a Mean

Normally, you'll get a slightly different result every time you do an experiment, due to small
random errors you can’t control. E.g. — holding your head in a slightly different place each
time you take a measurement from a ruler will cause random errors in the length you read off.

You can reduce the effect of these random errors on your results by repeating your experiment
and taking an average, or mean, of your results.
To find the mean: /45 /4 qq together the results of each repeat.

2) Divide this total by the number of repeats you did.

: Independent variables — not keen on accepting help...

1) A scientist investigates how changing the potential difference across a circuit component
affects the current through it. He measures the current three times at each potential difference.

a) Identify the independent and dependent variables in this investigation.

bl For a potential difference of 4 V, the scientist records currents of 0.13 A, 0.17 Aand 0.12 A.
Calculate the mean current through the component when the potential difference is 4 V.
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Analysing Your Data

" You can Present Your Results on a Graph

Graphs are the easiest way to see any patterns or trends in your results,

1) Usually the independent variable goes on the x-axis (along the bottom) and the dependent
variable goes on the y-axis (up the side). Make sure you label both axes clearly with the
quantity and units. Pick a sensible scale — both axes should go up in sensible steps, and
should spread the data out over the full graph (rather than bunching it up in a corner).

0.35 1 f:;;-.._
| i > 2) Plot your points
Py e o
~ using a sharp
0.25 - y ) :
il &‘:—” pencil. This
< 0.20 T will help make
Z TtT sure they're as
E 0.15 1 557, i accurate
Qo i -
4o 4 X as possible.
-~
i
0.05 - e H
—
0-00 | T 1 1 1] T | L] 1 A
0.00 1.00 2.00 3.00 4.00 5.00 6.00

Potential difference / V ' .
3) Identify any anomalous results,

like this one — it's way off the
general trend, and looks like

it was caused by a mistake.
Ignore anomalous results when
drawing your line of best fit.

1
4) Draw a line of best fit for your results. Around
half the data points should be above your line
of best fit and half below it. The line could be
straight or curved, depending on your data.

Graphs Can Show Different Kinds of Correlation

The correlation describes the relationship between the variables. Data can show:

POSITIVE CORRELATION:

NEGATIVE CORRELATION: NO CORRELATION:

As one variable increases,
the other decreases.

As one variable increases,
the other increases.

No relationship
between the variables.

Remember, just because two variables are correlated it doesn’t mean a change in one
is causing a change in the other — there could be a third variable affecting them both.

Anomalouse results — unusual results in the insect breeding program...

1) The table on the right gives the speed of a cyclist | time/s | 0.0 | 2.0 | 4.0 | 6.0 | 8.0 | 10.0
as he accelerates from rest. Plot a graph of his speed /

AT : : = peed 7 2| 4.2

speed against time, and draw a line of best fit. s i -7 | 18] 28] 3.2 |.-8.2
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Conclusions and Uncertainty

Draw Conclusions that Your Results Support

You should draw a conclusion that explains what your data shows.

1} Your conclusion should be limited to what you've actually done and found
out in your experiment. For example, if you've been investigating how the
force applied to a spring affects how much it stretches, and have only used
forces between 0 and 5 N, you can’t claim to know what would happen if
you used a force of 10 N, or if you used a different spring.

2) You also need to think about how much you can believe your
conclusion, by evaluating the quality of your results (see below).

If you can’t trust your results, you can't form a strong conclusion.

You can Never Measure Anything Exactly

1) There will always be errors and uncertainties in your results caused by lots of
different things, including human error (e.g. your reaction time). The more errors
there are in your results, the lower the quality of your data. This will affect the
strength of your conclusion (see above).

2) All measurements will have some uncertainty due to the equipment used.
For example, if you measure a length with a ruler, you can only measure it to the
nearest millimetre, as that's the smallest difference marked on the ruler’s scale.
If you measure a length with a ruler as 14 mm you can write this as 14 = 0.5 mm
to show that you could be up to half a millimetre out either way.

3) If you have a value without a + sign, the number of significant figures gives you an
estimate of the uncertainty. For example, 72 ms~' has 2 significant figures, so
without any other information you know this value must be 72 + 0.5 ms=' — if the
value was less than 71.5 ms™ it would have been rounded to 71 ms™', if it was greater
than 72.5 ms™' it would have been rounded to 73 ms-'.

Think About How to Improve Your Experiment

You should always think about how your experiment could be improved:

1) Did the experiment actually test what it was supposed to?
Could you make it more relevant to the question?

2) Was there anything you could have done to prevent
some of the errors in your results?

3) Would different apparatus or a different method
have given you better results?

In conclusion, | need a cup of tea...

1) A student records how long it takes for a car to stop when the brakes are fully applied.
He uses a stopwatch, and gets a measurement of 7.628 + 0.0005 seconds.
a) What is the smallest difference the stopwatch can measure?
b) The student says from his result he can accurately report the time taken for
the car to stop to 4 significant figures. Is he correct? Explain your answer,

e
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